નીચે દર્શાવેલ પ્રયોગ માટે નિદર્શાવકાશ દર્શાવો : એક પાસાને બે વાર ફેંકવામાં આવે છે.
When a die is thrown, the possible outcomes are $1,\,2,\,3,\,4,\,5,$ or $6$.
When a die is thrown two times, the sample is given by $S =\{(x, y): x , y =1,2,3,4,5,6\}$
The number of elements in this sample space is $6 \times 6=36,$ while the sample space is given by :
$S=\{(1,1),\,(1,2),\,(1,3)$, $( 1,4),\,(1,6),\,(2,1)$, $(2,2),\,(2,3),\,(2,4)$, $(2,5),\,(2,6),\,(3,1),$ $(3,2),\,(3,3),\,(3,4)$, $(3,5),$ $(3,6),\,(4,1)\,,(4,2)$, $(4,3),\,(4,4),\,(4,5),\,(4,6)$, $(5,1)\,,(5,2),$ $(5,3)\,,(5,4)\,,(5,5)$, $(5,6),\,(6,1),\,(6,2)$, $(6,3)$, $(6,4),\,(6,5),\,(6,6)\}$
બે પાસાંને સાથે ઉછાળવામાં આવે છે તો ઉપરના પૂણાકોનો સરવાળો $5$ થાય તેની સંભાવના.
એક સમતોલ સિક્કો સતત ઉછાળવામાં આવે છે.જો પહેલી ચાર વખત ઉછાળતાં કાંટો આવે તો પાંચમી વખત ઉછાળતા છાપ આવે તેની સંભાવના મેળવો.
ધારો કે બે ધન પુર્ણાકો ગુણાકારની મહત્તમ કિંમત $M$ છે, જ્યારે તેમનો સરવાળો $66$ છે. ધારો કે નિદર્શાવકાશ $S=\left\{x \in Z : x(66-x) \geq \frac{5}{9} M\right\}$ અને ઘટના $A =\{x \in S : x$ એ $3$ નો ગુણિત છે $\}$ તો $P ( A )=...........$
બગીચામાં $4$ લાલ, $3$ ગુલાબી, $5$ પીળા અને $8$ સફેદ ગુલાબ હોય તો અંધ માણસ વડે લાલ અથવા સફેદ ગુલાબને સ્પર્શવાની સંભાવના કેટલી થાય ?
ત્રણ સિક્કા એકવાર ઉછાળવામાં આવે છે. નીચેની ઘટનાઓનું વર્ણન કરો :
પરસ્પર નિવારક બે ઘટનાઓ